1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
#include "shared/net.hh"
namespace shared {
static std::string get_errno_str() noexcept { return strerror(errno); }
addrinfo_t make_addrinfo(const char* const address, const char* const port,
const addrinfo&& hints) {
addrinfo* info = nullptr;
if (int status = getaddrinfo(address, port, &hints, &info)) {
throw std::runtime_error{gai_strerror(status)};
}
return addrinfo_t{info, [](const auto& p) { freeaddrinfo(p); }};
}
socket_t make_socket(const addrinfo_t& info) {
const int sock =
socket(info->ai_family, info->ai_socktype, info->ai_protocol);
if (sock == -1) {
throw std::runtime_error{get_errno_str()};
}
// to avoid annoying binding timeouts
const int enable = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &enable, sizeof(int));
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int));
return sock;
}
socket_t accept_socket(const socket_t& lsock) {
sockaddr_in in{};
socklen_t size = sizeof(in);
const shared::socket_t sock =
accept(lsock, reinterpret_cast<sockaddr*>(&in), &size);
if (sock == -1) {
throw std::runtime_error(get_errno_str());
}
return sock;
}
void bind_socket(const socket_t sock, const addrinfo_t& info) {
// bind to first we can
for (const addrinfo* i = info.get(); i != nullptr; i = i->ai_next) {
if (bind(sock, info->ai_addr, info->ai_addrlen) == -1) {
continue;
}
return;
}
throw std::runtime_error{get_errno_str()};
}
void connect_socket(const socket_t sock, const addrinfo_t& info) {
if (connect(sock, info->ai_addr, info->ai_addrlen) == -1) {
throw std::runtime_error{get_errno_str()};
}
}
void listen_socket(const socket_t sock) {
if (listen(sock, SOMAXCONN) == -1) {
throw std::runtime_error{get_errno_str()};
}
}
void close_socket(const socket_t sock) {
if (close(sock) == -1) {
throw std::runtime_error{get_errno_str()};
}
}
packet contents_to_packet(const contents_t& contents,
const char* const command) {
packet ret{};
std::memset(&ret.header, 0, sizeof(ret.header)); // 0init padding bytes
std::uint32_t size = 0;
for (const auto& keyvalue : contents) {
const auto& key = keyvalue.first; // no structured bindings :(
const auto& value = keyvalue.second;
const auto contents_size = static_cast<std::uint32_t>(value.size());
decltype(ret.contents) addition;
// Copy the size, name and data as expected, then push it.
std::copy(reinterpret_cast<const char* const>(&contents_size),
reinterpret_cast<const char* const>(&contents_size) +
sizeof(contents_size),
std::back_inserter(addition));
std::copy(key.c_str(), key.c_str() + key.size() + 1,
std::back_inserter(addition));
std::copy(value.c_str(), value.c_str() + value.size(),
std::back_inserter(addition));
size += addition.size(); // update size before moving
std::copy(std::make_move_iterator(std::begin(addition)),
std::make_move_iterator(std::end(addition)),
std::back_inserter(ret.contents));
}
// fill in expected header values
ret.header.size = size + sizeof(packet::header);
std::memcpy(ret.header.command, command, 3);
return ret;
}
contents_t packet_to_contents(const packet& packet) {
contents_t ret{};
// Extract the data as described in the header file.
for (auto i = 0u; i < packet.contents.size();) {
const char* const data = packet.contents.data() + i;
const std::uint32_t contents_size = [&]() {
std::uint32_t contents_size;
std::memcpy(&contents_size,
reinterpret_cast<const std::uint32_t* const>(data),
sizeof(std::uint32_t));
return contents_size;
}();
const auto size_size = sizeof(std::uint32_t);
const std::string name = data + size_size;
const char* const contents = data + size_size + name.length() + 1;
ret.emplace(name, std::string{contents, contents + contents_size});
i += size_size + name.size() + 1 + contents_size;
}
return ret;
}
static std::vector<char> packet_to_data(const packet& packet) noexcept {
std::vector<char> data{};
// data.reserve(sizeof(struct packet) + packet.contents.size());
std::copy(reinterpret_cast<const char* const>(&packet.header),
reinterpret_cast<const char* const>(&packet.header) +
sizeof(packet::header),
std::back_inserter(data));
std::copy(std::begin(packet.contents), std::end(packet.contents),
std::back_inserter(data));
return data;
}
void send_packet(const packet& packet, const socket_t& sock,
const sockaddr_in& dest) {
const std::vector<char> data = packet_to_data(packet);
if (sendto(sock, data.data(), data.size(), 0, (sockaddr*)&dest,
sizeof(sockaddr_in)) == -1) {
throw std::runtime_error{get_errno_str()};
}
}
void send_packet(const packet& packet, const socket_t& sock) {
const std::vector<char> data = packet_to_data(packet);
const auto total_size = data.size();
for (unsigned sent = 0; sent < data.size();) {
const ssize_t res =
send(sock, data.data() + sent, total_size - sent, 0);
if (res != -1) {
sent += res;
continue;
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue;
}
throw std::runtime_error{get_errno_str()};
}
}
static std::size_t get_backlog_size(const socket_t& socket) noexcept {
size_t size = 0;
if (ioctl(socket, FIONREAD, &size) == -1) {
throw std::runtime_error{get_errno_str()};
}
return size;
}
std::shared_ptr<recv_packet_ret> maybe_urecv_packet(const socket_t& sock) {
const auto packet_size = get_backlog_size(sock);
if (packet_size <= 0) {
return nullptr;
}
recv_packet_ret ret;
unsigned int origin_len = sizeof(ret.origin);
std::vector<char> buffer;
buffer.reserve(packet_size);
if (recvfrom(sock, buffer.data(), packet_size, 0, (sockaddr*)&ret.origin,
&origin_len) == -1) {
throw std::runtime_error(get_errno_str());
}
std::memcpy(&ret.packet.header, buffer.data(), sizeof(packet::header));
ret.packet.contents.reserve(ret.packet.header.size -
sizeof(packet::header));
std::copy(buffer.data() + sizeof(packet::header),
buffer.data() + ret.packet.header.size,
std::back_inserter(ret.packet.contents));
return std::make_shared<recv_packet_ret>(std::move(ret));
}
// true when finished reading as our stream packets may be very large
static bool maybe_rrecv_packet(const socket_t& sock, packet& packet) {
auto backlog_size = get_backlog_size(sock);
if (backlog_size <= 0) {
return false;
}
auto& target_size = packet.header.size;
if (!target_size) { // header read required
if (backlog_size < sizeof(header)) { // no header, try again later
return false;
}
if (read(sock, &packet.header, sizeof(header)) == -1) {
throw std::runtime_error{get_errno_str()};
}
backlog_size -= sizeof(header);
}
const auto read_size =
std::min(backlog_size, static_cast<unsigned long>(target_size));
std::vector<char> buffer;
buffer.reserve(read_size);
if (read(sock, buffer.data(), read_size) == -1) {
throw std::runtime_error{get_errno_str()};
}
std::copy(buffer.data(), buffer.data() + read_size,
std::back_inserter(packet.contents));
if (packet.contents.size() < packet.header.size - sizeof(header)) {
return false; // more data to read, do again
}
return true;
}
static const auto ms_timeout = std::chrono::seconds(30);
std::shared_ptr<recv_packet_ret> urecv_packet(const socket_t& rsock,
const bool& timeout) {
// poll our non-blocking sockets
const auto start = std::chrono::steady_clock::now();
while (!shared::should_exit) {
const auto pkt = maybe_urecv_packet(rsock);
if (pkt != nullptr) {
return pkt;
}
if (timeout && std::chrono::steady_clock::now() > start + ms_timeout) {
throw std::runtime_error("urecv timeout elapsed");
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
throw should_exit_exception();
}
std::shared_ptr<packet> rrecv_packet(const socket_t& rsock,
const bool& timeout) {
packet packet{};
auto last = std::chrono::steady_clock::now();
while (!shared::should_exit) {
const auto prev_size = packet.contents.size();
if (maybe_rrecv_packet(rsock, packet)) {
return std::make_shared<struct packet>(std::move(packet));
}
if (prev_size != packet.contents.size()) {
last = std::chrono::steady_clock::now();
}
if (timeout && std::chrono::steady_clock::now() > last + ms_timeout) {
throw std::runtime_error("rrecv timeout elapsed");
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
throw should_exit_exception();
}
} // namespace shared
|